distributive lattice - definição. O que é distributive lattice. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é distributive lattice - definição


Distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection.
distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
<theory> A lattice for which the least upper bound (lub) and greatest lower bound (glb) operators distribute over one another so that a lub (b glb c) == (a lub c) glb (a lub b) and vice versa. ("lub" and "glb" are written in LateX as sqcup and sqcap). (1998-11-09)
Duality theory for distributive lattices         
In mathematics, duality theory for distributive lattices provides three different (but closely related) representations of bounded distributive lattices via Priestley spaces, spectral spaces, and pairwise Stone spaces. This duality, which is originally also due to Marshall H.